SyntaxGameServer/RCCService2018/content/LuaPackages/OtterImpl/spring.lua

149 lines
3.5 KiB
Lua

--[[
An analytical spring solution as a function of damping ratio and frequency.
Adapted from
https://gist.github.com/Fraktality/1033625223e13c01aa7144abe4aaf54d
]]
local assign = require(script.Parent.assign)
local pi = math.pi
local abs = math.abs
local exp = math.exp
local sin = math.sin
local cos = math.cos
local sqrt = math.sqrt
local RESTING_VELOCITY_LIMIT = 1e-3
local RESTING_POSITION_LIMIT = 1e-2
local function step(self, state, dt)
-- Advance the spring simulation by dt seconds.
-- Take the damped harmonic oscillator ODE:
-- f^2*(X[t] - g) + 2*d*f*X'[t] + X''[t] = 0
-- Where X[t] is position at time t, g is desired position, f is angular frequency, and d is damping ratio.
-- Apply constant initial conditions:
-- X[0] = p0
-- X'[0] = v0
-- Solve the IVP to get analytic expressions for X[t] and X'[t].
-- The solution takes on one of three forms for d=1, d<1, and d>1
local d = self.__dampingRatio
local f = self.__frequency * 2 * pi -- Rad/s
local g = self.__goalPosition
local p0 = state.value
local v0 = state.velocity or 0
local offset = p0 - g
local decay = exp(-dt*d*f)
local p1, v1
if d == 1 then -- Critically damped
p1 = (v0*dt + offset*(f*dt + 1))*decay + g
v1 = (v0 - f*dt*(offset*f + v0))*decay
elseif d < 1 then -- Underdamped
local c = sqrt(1 - d*d)
local i = cos(f*c*dt)
local j = sin(f*c*dt)
-- Problem: Damping ratios close to 1 can cause numerical instability.
-- Solution: Rearrange to group terms involving j/c, then find an approximation z for j/c.
-- z = sin(dt*f*c)/c
-- Substitute a for dt*f
-- z = sin(a*c)/c
-- Take the 5th-order series expansion of z at c = 0
-- z = a - (a^3*c^2)/6 + (a^5*c^4)/120 + O(c^6)
-- z ≈ a - (a^3*c^2)/6 + (a^5*c^4)/120
-- Rewrite in Horner form to mitigate precision issues
-- z ≈ a + ((a*a)*(c*c)*(c*c)/20 - c*c)*(a*a*a)/6
local z
if c > 1e-4 then
z = j/c
else
local a = dt*f
z = a + ((a*a)*(c*c)*(c*c)/20 - c*c)*(a*a*a)/6
end
-- Repeat the process with a->dt and c->b=f*c for the f->0 case
local y
if f*c > 1e-4 then
y = j/(f*c)
else
local b = f*c
y = dt + ((dt*dt)*(b*b)*(b*b)/20 - b*b)*(dt*dt*dt)/6
end
p1 = (offset*(i + d*z) + v0*y)*decay + g
v1 = (v0*(i - z*d) - offset*(z*f))*decay
else -- Overdamped
local c = sqrt(d*d - 1)
local r1 = -f*(d - c)
local r2 = -f*(d + c)
local co2 = (v0 - r1*offset)/(2*f*c)
local co1 = offset - co2
local e1 = co1*exp(r1*dt)
local e2 = co2*exp(r2*dt)
p1 = e1 + e2 + g
v1 = r1*e1 + r2*e2
end
local positionOffset = abs(p1 - self.__goalPosition)
local velocityOffset = abs(v1)
local complete = velocityOffset < RESTING_VELOCITY_LIMIT and positionOffset < RESTING_POSITION_LIMIT
if complete then
p1 = self.__goalPosition
v1 = 0
end
return {
value = p1,
velocity = v1,
complete = complete,
}
end
local function spring(goalPosition, inputOptions)
assert(typeof(goalPosition) == "number")
local options = {
dampingRatio = 1,
frequency = 1,
}
if inputOptions ~= nil then
assert(typeof(inputOptions) == "table")
assign(options, inputOptions)
end
local dampingRatio = options.dampingRatio
local frequency = options.frequency
assert(typeof(dampingRatio) == "number")
assert(typeof(frequency) == "number")
assert(dampingRatio * frequency >= 0, "Expected dampingRatio * frequency >= 0")
local self = {
__dampingRatio = dampingRatio,
__frequency = frequency, -- Hz
__goalPosition = goalPosition,
step = step,
}
return self
end
return spring