#include "common.h" TEX_DECLARE2D(Texture, 0); TEX_DECLARE2D(Mask, 1); // .xy = gbuffer width/height, .zw = inverse gbuffer width/height uniform float4 TextureSize; uniform float4 Params1; uniform float4 Params2; #if defined(GLSL) || defined(DX11) float4 convertPosition(float4 p, float scale) { return p; } #else float4 convertPosition(float4 p, float scale) { // half-pixel offset return p + float4(-TextureSize.z, TextureSize.w, 0, 0) * scale; } #endif #ifndef GLSL float2 convertUv(float4 p) { return p.xy * float2(0.5, -0.5) + 0.5; } #else float2 convertUv(float4 p) { return p.xy * 0.5 + 0.5; } #endif // simple pass through structure struct VertexOutput { float4 p : POSITION; float2 uv : TEXCOORD0; }; // position and tex coord + 4 additional tex coords struct VertexOutput_4uv { float4 p : POSITION; float2 uv : TEXCOORD0; float4 uv12 : TEXCOORD1; float4 uv34 : TEXCOORD2; }; // position and tex coord + 8 additional tex coords struct VertexOutput_8uv { float4 p : POSITION; float2 uv : TEXCOORD0; float4 uv12 : TEXCOORD1; float4 uv34 : TEXCOORD2; float4 uv56 : TEXCOORD3; float4 uv78 : TEXCOORD4; }; VertexOutput passThrough_vs(float4 p: POSITION) { VertexOutput OUT; OUT.p = convertPosition(p, 1); OUT.uv = convertUv(p); return OUT; } float4 passThrough_ps( VertexOutput IN ) : COLOR0 { return tex2D(Texture, IN.uv); } VertexOutput_4uv downsample4x4_vs(float4 p: POSITION) { float2 uv = convertUv(p); VertexOutput_4uv OUT; OUT.p = convertPosition(p, 1); OUT.uv = uv; float2 uvOffset = TextureSize.zw * 0.25f; OUT.uv12.xy = uv + uvOffset * float2(-1, -1); OUT.uv12.zw = uv + uvOffset * float2(+1, -1); OUT.uv34.xy = uv + uvOffset * float2(-1, +1); OUT.uv34.zw = uv + uvOffset * float2(+1, +1); return OUT; } float4 imageProcess_ps( VertexOutput IN ) : COLOR0 { float3 color = tex2D(Texture, IN.uv).rgb; float4 tintColor = float4(Params2.xyz,1); //float4 tintColor = float4(18.0 / 255.0, 58.0 / 255.0, 80.0 / 255.0, 1); float contrast = Params1.y; float brightness = Params1.x; float grayscaleLvl = Params1.z; color = contrast*(color - 0.5) + 0.5 + brightness; float grayscale = (color.r + color.g + color.g) / 3.0; return lerp(float4(color.rgb,1), float4(grayscale.xxx,1), grayscaleLvl) * tintColor; } float4 gauss(float samples, float2 uv) { float2 step = Params1.xy; float sigma = Params1.z; float sigmaN1 = 1 / sqrt(2 * 3.1415926 * sigma * sigma); float sigmaN2 = 1 / (2 * sigma * sigma); // First sample is in the center and accounts for our pixel float4 result = tex2D(Texture, uv) * sigmaN1; float weight = sigmaN1; // Every loop iteration computes impact of 4 pixels // Each sample computes impact of 2 neighbor pixels, starting with the next one to the right // Note that we sample exactly in between pixels to leverage bilinear filtering for (int i = 0; i < samples; ++i) { float ix = 2 * i + 1.5; float iw = 2 * exp(-ix * ix * sigmaN2) * sigmaN1; result += (tex2D(Texture, uv + step * ix) + tex2D(Texture, uv - step * ix)) * iw; weight += 2 * iw; } // Since the above is an approximation of the integral with step functions, normalization compensates for the error return (result / weight); } float4 blur3_ps(VertexOutput IN): COLOR0 { return gauss(3, IN.uv); } float4 blur5_ps(VertexOutput IN): COLOR0 { return gauss(5, IN.uv); } float4 blur7_ps(VertexOutput IN): COLOR0 { return gauss(7, IN.uv); } float4 glowApply_ps( VertexOutput IN ) : COLOR0 { float4 color = tex2D(Texture, IN.uv); return float4(color.rgb * Params1.x, color.a); } // this is specific glow downsample float4 downSample4x4Glow_ps( VertexOutput_4uv IN ) : COLOR0 { float4 avgColor = tex2D( Texture, IN.uv12.xy ); avgColor += tex2D( Texture, IN.uv12.zw ); avgColor += tex2D( Texture, IN.uv34.xy ); avgColor += tex2D( Texture, IN.uv34.zw ); avgColor *= 0.25; return float4(avgColor.rgb, 1) * (1-avgColor.a); } float4 ShadowBlurPS(VertexOutput IN): COLOR0 { #ifdef GLSLES int N = 1; float sigma = 0.5; #else int N = 3; float sigma = 1.5; #endif float2 step = Params1.xy; float sigmaN1 = 1 / sqrt(2 * 3.1415926 * sigma * sigma); float sigmaN2 = 1 / (2 * sigma * sigma); float depth = 1; float color = 0; float weight = 0; for (int i = -N; i <= N; ++i) { float ix = i; float iw = exp(-ix * ix * sigmaN2) * sigmaN1; float4 data = tex2D(Texture, IN.uv + step * ix); depth = min(depth, data.x); color += data.y * iw; weight += iw; } float mask = tex2D(Mask, IN.uv).r; // Since the above is an approximation of the integral with step functions, normalization compensates for the error return float4(depth, color * mask * (1 / weight), 0, 0); }