polygon-website-foss/api/private/vendors/PasswordLock.php

1332 lines
49 KiB
PHP

<?php
// modified by pizzaboxer
// im lazy and just threw all the required classes and stuff into this one file lol
declare(strict_types=1);
namespace Defuse\Crypto
{
use Defuse\Crypto\Exception as Ex;
final class Key
{
const KEY_CURRENT_VERSION = "\xDE\xF0\x00\x00";
const KEY_BYTE_SIZE = 32;
private $key_bytes;
public static function createNewRandomKey()
{
return new Key(Core::secureRandom(self::KEY_BYTE_SIZE));
}
public static function loadFromAsciiSafeString($saved_key_string, $do_not_trim = false)
{
if (!$do_not_trim) {
$saved_key_string = Encoding::trimTrailingWhitespace($saved_key_string);
}
$key_bytes = Encoding::loadBytesFromChecksummedAsciiSafeString(self::KEY_CURRENT_VERSION, $saved_key_string);
return new Key($key_bytes);
}
public function saveToAsciiSafeString()
{
return Encoding::saveBytesToChecksummedAsciiSafeString(
self::KEY_CURRENT_VERSION,
$this->key_bytes
);
}
public function getRawBytes()
{
return $this->key_bytes;
}
private function __construct($bytes)
{
Core::ensureTrue(
Core::ourStrlen($bytes) === self::KEY_BYTE_SIZE,
'Bad key length.'
);
$this->key_bytes = $bytes;
}
}
final class KeyOrPassword
{
const PBKDF2_ITERATIONS = 100000;
const SECRET_TYPE_KEY = 1;
const SECRET_TYPE_PASSWORD = 2;
private $secret_type = 0;
private $secret;
public static function createFromKey(Key $key)
{
return new KeyOrPassword(self::SECRET_TYPE_KEY, $key);
}
public static function createFromPassword($password)
{
return new KeyOrPassword(self::SECRET_TYPE_PASSWORD, $password);
}
public function deriveKeys($salt)
{
Core::ensureTrue(
Core::ourStrlen($salt) === Core::SALT_BYTE_SIZE,
'Bad salt.'
);
if ($this->secret_type === self::SECRET_TYPE_KEY) {
Core::ensureTrue($this->secret instanceof Key);
/**
* @psalm-suppress PossiblyInvalidMethodCall
*/
$akey = Core::HKDF(
Core::HASH_FUNCTION_NAME,
$this->secret->getRawBytes(),
Core::KEY_BYTE_SIZE,
Core::AUTHENTICATION_INFO_STRING,
$salt
);
/**
* @psalm-suppress PossiblyInvalidMethodCall
*/
$ekey = Core::HKDF(
Core::HASH_FUNCTION_NAME,
$this->secret->getRawBytes(),
Core::KEY_BYTE_SIZE,
Core::ENCRYPTION_INFO_STRING,
$salt
);
return new DerivedKeys($akey, $ekey);
} elseif ($this->secret_type === self::SECRET_TYPE_PASSWORD) {
Core::ensureTrue(\is_string($this->secret));
/* Our PBKDF2 polyfill is vulnerable to a DoS attack documented in
* GitHub issue #230. The fix is to pre-hash the password to ensure
* it is short. We do the prehashing here instead of in pbkdf2() so
* that pbkdf2() still computes the function as defined by the
* standard. */
/**
* @psalm-suppress PossiblyInvalidArgument
*/
$prehash = \hash(Core::HASH_FUNCTION_NAME, $this->secret, true);
$prekey = Core::pbkdf2(
Core::HASH_FUNCTION_NAME,
$prehash,
$salt,
self::PBKDF2_ITERATIONS,
Core::KEY_BYTE_SIZE,
true
);
$akey = Core::HKDF(
Core::HASH_FUNCTION_NAME,
$prekey,
Core::KEY_BYTE_SIZE,
Core::AUTHENTICATION_INFO_STRING,
$salt
);
/* Note the cryptographic re-use of $salt here. */
$ekey = Core::HKDF(
Core::HASH_FUNCTION_NAME,
$prekey,
Core::KEY_BYTE_SIZE,
Core::ENCRYPTION_INFO_STRING,
$salt
);
return new DerivedKeys($akey, $ekey);
} else {
throw new Ex\EnvironmentIsBrokenException('Bad secret type.');
}
}
private function __construct($secret_type, $secret)
{
// The constructor is private, so these should never throw.
if ($secret_type === self::SECRET_TYPE_KEY) {
Core::ensureTrue($secret instanceof Key);
} elseif ($secret_type === self::SECRET_TYPE_PASSWORD) {
Core::ensureTrue(\is_string($secret));
} else {
throw new Ex\EnvironmentIsBrokenException('Bad secret type.');
}
$this->secret_type = $secret_type;
$this->secret = $secret;
}
}
final class Core
{
const HEADER_VERSION_SIZE = 4;
const MINIMUM_CIPHERTEXT_SIZE = 84;
const CURRENT_VERSION = "\xDE\xF5\x02\x00";
const CIPHER_METHOD = 'aes-256-ctr';
const BLOCK_BYTE_SIZE = 16;
const KEY_BYTE_SIZE = 32;
const SALT_BYTE_SIZE = 32;
const MAC_BYTE_SIZE = 32;
const HASH_FUNCTION_NAME = 'sha256';
const ENCRYPTION_INFO_STRING = 'DefusePHP|V2|KeyForEncryption';
const AUTHENTICATION_INFO_STRING = 'DefusePHP|V2|KeyForAuthentication';
const BUFFER_BYTE_SIZE = 1048576;
const LEGACY_CIPHER_METHOD = 'aes-128-cbc';
const LEGACY_BLOCK_BYTE_SIZE = 16;
const LEGACY_KEY_BYTE_SIZE = 16;
const LEGACY_HASH_FUNCTION_NAME = 'sha256';
const LEGACY_MAC_BYTE_SIZE = 32;
const LEGACY_ENCRYPTION_INFO_STRING = 'DefusePHP|KeyForEncryption';
const LEGACY_AUTHENTICATION_INFO_STRING = 'DefusePHP|KeyForAuthentication';
public static function incrementCounter($ctr, $inc)
{
Core::ensureTrue(
Core::ourStrlen($ctr) === Core::BLOCK_BYTE_SIZE,
'Trying to increment a nonce of the wrong size.'
);
Core::ensureTrue(
\is_int($inc),
'Trying to increment nonce by a non-integer.'
);
// The caller is probably re-using CTR-mode keystream if they increment by 0.
Core::ensureTrue(
$inc > 0,
'Trying to increment a nonce by a nonpositive amount'
);
Core::ensureTrue(
$inc <= PHP_INT_MAX - 255,
'Integer overflow may occur'
);
/*
* We start at the rightmost byte (big-endian)
* So, too, does OpenSSL: http://stackoverflow.com/a/3146214/2224584
*/
for ($i = Core::BLOCK_BYTE_SIZE - 1; $i >= 0; --$i) {
$sum = \ord($ctr[$i]) + $inc;
/* Detect integer overflow and fail. */
Core::ensureTrue(\is_int($sum), 'Integer overflow in CTR mode nonce increment');
$ctr[$i] = \pack('C', $sum & 0xFF);
$inc = $sum >> 8;
}
return $ctr;
}
public static function secureRandom($octets)
{
self::ensureFunctionExists('random_bytes');
try {
return \random_bytes($octets);
} catch (\Exception $ex) {
throw new Ex\EnvironmentIsBrokenException(
'Your system does not have a secure random number generator.'
);
}
}
public static function HKDF($hash, $ikm, $length, $info = '', $salt = null)
{
static $nativeHKDF = null;
if ($nativeHKDF === null) {
$nativeHKDF = \is_callable('\\hash_hkdf');
}
if ($nativeHKDF) {
if (\is_null($salt)) {
$salt = '';
}
return \hash_hkdf($hash, $ikm, $length, $info, $salt);
}
$digest_length = Core::ourStrlen(\hash_hmac($hash, '', '', true));
// Sanity-check the desired output length.
Core::ensureTrue(
!empty($length) && \is_int($length) && $length >= 0 && $length <= 255 * $digest_length,
'Bad output length requested of HDKF.'
);
// "if [salt] not provided, is set to a string of HashLen zeroes."
if (\is_null($salt)) {
$salt = \str_repeat("\x00", $digest_length);
}
// HKDF-Extract:
// PRK = HMAC-Hash(salt, IKM)
// The salt is the HMAC key.
$prk = \hash_hmac($hash, $ikm, $salt, true);
// HKDF-Expand:
// This check is useless, but it serves as a reminder to the spec.
Core::ensureTrue(Core::ourStrlen($prk) >= $digest_length);
// T(0) = ''
$t = '';
$last_block = '';
for ($block_index = 1; Core::ourStrlen($t) < $length; ++$block_index) {
// T(i) = HMAC-Hash(PRK, T(i-1) | info | 0x??)
$last_block = \hash_hmac(
$hash,
$last_block . $info . \chr($block_index),
$prk,
true
);
// T = T(1) | T(2) | T(3) | ... | T(N)
$t .= $last_block;
}
// ORM = first L octets of T
/** @var string $orm */
$orm = Core::ourSubstr($t, 0, $length);
Core::ensureTrue(\is_string($orm));
return $orm;
}
public static function hashEquals($expected, $given)
{
static $native = null;
if ($native === null) {
$native = \function_exists('hash_equals');
}
if ($native) {
return \hash_equals($expected, $given);
}
// We can't just compare the strings with '==', since it would make
// timing attacks possible. We could use the XOR-OR constant-time
// comparison algorithm, but that may not be a reliable defense in an
// interpreted language. So we use the approach of HMACing both strings
// with a random key and comparing the HMACs.
// We're not attempting to make variable-length string comparison
// secure, as that's very difficult. Make sure the strings are the same
// length.
Core::ensureTrue(Core::ourStrlen($expected) === Core::ourStrlen($given));
$blind = Core::secureRandom(32);
$message_compare = \hash_hmac(Core::HASH_FUNCTION_NAME, $given, $blind);
$correct_compare = \hash_hmac(Core::HASH_FUNCTION_NAME, $expected, $blind);
return $correct_compare === $message_compare;
}
public static function ensureConstantExists($name)
{
Core::ensureTrue(\defined($name));
}
public static function ensureFunctionExists($name)
{
Core::ensureTrue(\function_exists($name));
}
public static function ensureTrue($condition, $message = '')
{
if (!$condition) {
throw new Ex\EnvironmentIsBrokenException($message);
}
}
/*
* We need these strlen() and substr() functions because when
* 'mbstring.func_overload' is set in php.ini, the standard strlen() and
* substr() are replaced by mb_strlen() and mb_substr().
*/
public static function ourStrlen($str)
{
static $exists = null;
if ($exists === null) {
$exists = \extension_loaded('mbstring') && \ini_get('mbstring.func_overload') !== false && (int)\ini_get('mbstring.func_overload') & MB_OVERLOAD_STRING;
}
if ($exists) {
$length = \mb_strlen($str, '8bit');
Core::ensureTrue($length !== false);
return $length;
} else {
return \strlen($str);
}
}
public static function ourSubstr($str, $start, $length = null)
{
static $exists = null;
if ($exists === null) {
$exists = \extension_loaded('mbstring') && \ini_get('mbstring.func_overload') !== false && (int)\ini_get('mbstring.func_overload') & MB_OVERLOAD_STRING;
}
// This is required to make mb_substr behavior identical to substr.
// Without this, mb_substr() would return false, contra to what the
// PHP documentation says (it doesn't say it can return false.)
$input_len = Core::ourStrlen($str);
if ($start === $input_len && !$length) {
return '';
}
if ($start > $input_len) {
return false;
}
// mb_substr($str, 0, NULL, '8bit') returns an empty string on PHP 5.3,
// so we have to find the length ourselves. Also, substr() doesn't
// accept null for the length.
if (! isset($length)) {
if ($start >= 0) {
$length = $input_len - $start;
} else {
$length = -$start;
}
}
if ($length < 0) {
throw new \InvalidArgumentException(
"Negative lengths are not supported with ourSubstr."
);
}
if ($exists) {
$substr = \mb_substr($str, $start, $length, '8bit');
// At this point there are two cases where mb_substr can
// legitimately return an empty string. Either $length is 0, or
// $start is equal to the length of the string (both mb_substr and
// substr return an empty string when this happens). It should never
// ever return a string that's longer than $length.
if (Core::ourStrlen($substr) > $length || (Core::ourStrlen($substr) === 0 && $length !== 0 && $start !== $input_len)) {
throw new Ex\EnvironmentIsBrokenException(
'Your version of PHP has bug #66797. Its implementation of
mb_substr() is incorrect. See the details here:
https://bugs.php.net/bug.php?id=66797'
);
}
return $substr;
}
return \substr($str, $start, $length);
}
public static function pbkdf2($algorithm, $password, $salt, $count, $key_length, $raw_output = false)
{
// Type checks:
if (! \is_string($algorithm)) {
throw new \InvalidArgumentException(
'pbkdf2(): algorithm must be a string'
);
}
if (! \is_string($password)) {
throw new \InvalidArgumentException(
'pbkdf2(): password must be a string'
);
}
if (! \is_string($salt)) {
throw new \InvalidArgumentException(
'pbkdf2(): salt must be a string'
);
}
// Coerce strings to integers with no information loss or overflow
$count += 0;
$key_length += 0;
$algorithm = \strtolower($algorithm);
Core::ensureTrue(
\in_array($algorithm, \hash_algos(), true),
'Invalid or unsupported hash algorithm.'
);
// Whitelist, or we could end up with people using CRC32.
$ok_algorithms = [
'sha1', 'sha224', 'sha256', 'sha384', 'sha512',
'ripemd160', 'ripemd256', 'ripemd320', 'whirlpool',
];
Core::ensureTrue(
\in_array($algorithm, $ok_algorithms, true),
'Algorithm is not a secure cryptographic hash function.'
);
Core::ensureTrue($count > 0 && $key_length > 0, 'Invalid PBKDF2 parameters.');
if (\function_exists('hash_pbkdf2')) {
// The output length is in NIBBLES (4-bits) if $raw_output is false!
if (! $raw_output) {
$key_length = $key_length * 2;
}
return \hash_pbkdf2($algorithm, $password, $salt, $count, $key_length, $raw_output);
}
$hash_length = Core::ourStrlen(\hash($algorithm, '', true));
$block_count = \ceil($key_length / $hash_length);
$output = '';
for ($i = 1; $i <= $block_count; $i++) {
// $i encoded as 4 bytes, big endian.
$last = $salt . \pack('N', $i);
// first iteration
$last = $xorsum = \hash_hmac($algorithm, $last, $password, true);
// perform the other $count - 1 iterations
for ($j = 1; $j < $count; $j++) {
$xorsum ^= ($last = \hash_hmac($algorithm, $last, $password, true));
}
$output .= $xorsum;
}
if ($raw_output) {
return (string) Core::ourSubstr($output, 0, $key_length);
} else {
return Encoding::binToHex((string) Core::ourSubstr($output, 0, $key_length));
}
}
}
final class Encoding
{
const CHECKSUM_BYTE_SIZE = 32;
const CHECKSUM_HASH_ALGO = 'sha256';
const SERIALIZE_HEADER_BYTES = 4;
public static function binToHex($byte_string)
{
$hex = '';
$len = Core::ourStrlen($byte_string);
for ($i = 0; $i < $len; ++$i) {
$c = \ord($byte_string[$i]) & 0xf;
$b = \ord($byte_string[$i]) >> 4;
$hex .= \pack(
'CC',
87 + $b + ((($b - 10) >> 8) & ~38),
87 + $c + ((($c - 10) >> 8) & ~38)
);
}
return $hex;
}
public static function hexToBin($hex_string)
{
$hex_pos = 0;
$bin = '';
$hex_len = Core::ourStrlen($hex_string);
$state = 0;
$c_acc = 0;
while ($hex_pos < $hex_len) {
$c = \ord($hex_string[$hex_pos]);
$c_num = $c ^ 48;
$c_num0 = ($c_num - 10) >> 8;
$c_alpha = ($c & ~32) - 55;
$c_alpha0 = (($c_alpha - 10) ^ ($c_alpha - 16)) >> 8;
if (($c_num0 | $c_alpha0) === 0) {
throw new Ex\BadFormatException(
'Encoding::hexToBin() input is not a hex string.'
);
}
$c_val = ($c_num0 & $c_num) | ($c_alpha & $c_alpha0);
if ($state === 0) {
$c_acc = $c_val * 16;
} else {
$bin .= \pack('C', $c_acc | $c_val);
}
$state ^= 1;
++$hex_pos;
}
return $bin;
}
public static function trimTrailingWhitespace($string = '')
{
$length = Core::ourStrlen($string);
if ($length < 1) {
return '';
}
do {
$prevLength = $length;
$last = $length - 1;
$chr = \ord($string[$last]);
/* Null Byte (0x00), a.k.a. \0 */
// if ($chr === 0x00) $length -= 1;
$sub = (($chr - 1) >> 8 ) & 1;
$length -= $sub;
$last -= $sub;
/* Horizontal Tab (0x09) a.k.a. \t */
$chr = \ord($string[$last]);
// if ($chr === 0x09) $length -= 1;
$sub = (((0x08 - $chr) & ($chr - 0x0a)) >> 8) & 1;
$length -= $sub;
$last -= $sub;
/* New Line (0x0a), a.k.a. \n */
$chr = \ord($string[$last]);
// if ($chr === 0x0a) $length -= 1;
$sub = (((0x09 - $chr) & ($chr - 0x0b)) >> 8) & 1;
$length -= $sub;
$last -= $sub;
/* Carriage Return (0x0D), a.k.a. \r */
$chr = \ord($string[$last]);
// if ($chr === 0x0d) $length -= 1;
$sub = (((0x0c - $chr) & ($chr - 0x0e)) >> 8) & 1;
$length -= $sub;
$last -= $sub;
/* Space */
$chr = \ord($string[$last]);
// if ($chr === 0x20) $length -= 1;
$sub = (((0x1f - $chr) & ($chr - 0x21)) >> 8) & 1;
$length -= $sub;
} while ($prevLength !== $length && $length > 0);
return (string) Core::ourSubstr($string, 0, $length);
}
/*
* SECURITY NOTE ON APPLYING CHECKSUMS TO SECRETS:
*
* The checksum introduces a potential security weakness. For example,
* suppose we apply a checksum to a key, and that an adversary has an
* exploit against the process containing the key, such that they can
* overwrite an arbitrary byte of memory and then cause the checksum to
* be verified and learn the result.
*
* In this scenario, the adversary can extract the key one byte at
* a time by overwriting it with their guess of its value and then
* asking if the checksum matches. If it does, their guess was right.
* This kind of attack may be more easy to implement and more reliable
* than a remote code execution attack.
*
* This attack also applies to authenticated encryption as a whole, in
* the situation where the adversary can overwrite a byte of the key
* and then cause a valid ciphertext to be decrypted, and then
* determine whether the MAC check passed or failed.
*
* By using the full SHA256 hash instead of truncating it, I'm ensuring
* that both ways of going about the attack are equivalently difficult.
* A shorter checksum of say 32 bits might be more useful to the
* adversary as an oracle in case their writes are coarser grained.
*
* Because the scenario assumes a serious vulnerability, we don't try
* to prevent attacks of this style.
*/
public static function saveBytesToChecksummedAsciiSafeString($header, $bytes)
{
// Headers must be a constant length to prevent one type's header from
// being a prefix of another type's header, leading to ambiguity.
Core::ensureTrue(
Core::ourStrlen($header) === self::SERIALIZE_HEADER_BYTES,
'Header must be ' . self::SERIALIZE_HEADER_BYTES . ' bytes.'
);
return Encoding::binToHex(
$header .
$bytes .
\hash(
self::CHECKSUM_HASH_ALGO,
$header . $bytes,
true
)
);
}
public static function loadBytesFromChecksummedAsciiSafeString($expected_header, $string)
{
// Headers must be a constant length to prevent one type's header from
// being a prefix of another type's header, leading to ambiguity.
Core::ensureTrue(
Core::ourStrlen($expected_header) === self::SERIALIZE_HEADER_BYTES,
'Header must be 4 bytes.'
);
/* If you get an exception here when attempting to load from a file, first pass your
key to Encoding::trimTrailingWhitespace() to remove newline characters, etc. */
$bytes = Encoding::hexToBin($string);
/* Make sure we have enough bytes to get the version header and checksum. */
if (Core::ourStrlen($bytes) < self::SERIALIZE_HEADER_BYTES + self::CHECKSUM_BYTE_SIZE) {
throw new Ex\BadFormatException(
'Encoded data is shorter than expected.'
);
}
/* Grab the version header. */
$actual_header = (string) Core::ourSubstr($bytes, 0, self::SERIALIZE_HEADER_BYTES);
if ($actual_header !== $expected_header) {
throw new Ex\BadFormatException(
'Invalid header.'
);
}
/* Grab the bytes that are part of the checksum. */
$checked_bytes = (string) Core::ourSubstr(
$bytes,
0,
Core::ourStrlen($bytes) - self::CHECKSUM_BYTE_SIZE
);
/* Grab the included checksum. */
$checksum_a = (string) Core::ourSubstr(
$bytes,
Core::ourStrlen($bytes) - self::CHECKSUM_BYTE_SIZE,
self::CHECKSUM_BYTE_SIZE
);
/* Re-compute the checksum. */
$checksum_b = \hash(self::CHECKSUM_HASH_ALGO, $checked_bytes, true);
/* Check if the checksum matches. */
if (! Core::hashEquals($checksum_a, $checksum_b)) {
throw new Ex\BadFormatException(
"Data is corrupted, the checksum doesn't match"
);
}
return (string) Core::ourSubstr(
$bytes,
self::SERIALIZE_HEADER_BYTES,
Core::ourStrlen($bytes) - self::SERIALIZE_HEADER_BYTES - self::CHECKSUM_BYTE_SIZE
);
}
}
final class DerivedKeys
{
private $akey = '';
private $ekey = '';
public function getAuthenticationKey()
{
return $this->akey;
}
public function getEncryptionKey()
{
return $this->ekey;
}
public function __construct($akey, $ekey)
{
$this->akey = $akey;
$this->ekey = $ekey;
}
}
class Crypto
{
public static function encrypt($plaintext, $key, $raw_binary = false)
{
if (!\is_string($plaintext)) {
throw new \TypeError(
'String expected for argument 1. ' . \ucfirst(\gettype($plaintext)) . ' given instead.'
);
}
if (!($key instanceof Key)) {
throw new \TypeError(
'Key expected for argument 2. ' . \ucfirst(\gettype($key)) . ' given instead.'
);
}
if (!\is_bool($raw_binary)) {
throw new \TypeError(
'Boolean expected for argument 3. ' . \ucfirst(\gettype($raw_binary)) . ' given instead.'
);
}
return self::encryptInternal(
$plaintext,
KeyOrPassword::createFromKey($key),
$raw_binary
);
}
public static function encryptWithPassword($plaintext, $password, $raw_binary = false)
{
if (!\is_string($plaintext)) {
throw new \TypeError(
'String expected for argument 1. ' . \ucfirst(\gettype($plaintext)) . ' given instead.'
);
}
if (!\is_string($password)) {
throw new \TypeError(
'String expected for argument 2. ' . \ucfirst(\gettype($password)) . ' given instead.'
);
}
if (!\is_bool($raw_binary)) {
throw new \TypeError(
'Boolean expected for argument 3. ' . \ucfirst(\gettype($raw_binary)) . ' given instead.'
);
}
return self::encryptInternal(
$plaintext,
KeyOrPassword::createFromPassword($password),
$raw_binary
);
}
public static function decrypt($ciphertext, $key, $raw_binary = false)
{
if (!\is_string($ciphertext)) {
throw new \TypeError(
'String expected for argument 1. ' . \ucfirst(\gettype($ciphertext)) . ' given instead.'
);
}
if (!($key instanceof Key)) {
throw new \TypeError(
'Key expected for argument 2. ' . \ucfirst(\gettype($key)) . ' given instead.'
);
}
if (!\is_bool($raw_binary)) {
throw new \TypeError(
'Boolean expected for argument 3. ' . \ucfirst(\gettype($raw_binary)) . ' given instead.'
);
}
return self::decryptInternal(
$ciphertext,
KeyOrPassword::createFromKey($key),
$raw_binary
);
}
public static function decryptWithPassword($ciphertext, $password, $raw_binary = false)
{
if (!\is_string($ciphertext)) {
throw new \TypeError(
'String expected for argument 1. ' . \ucfirst(\gettype($ciphertext)) . ' given instead.'
);
}
if (!\is_string($password)) {
throw new \TypeError(
'String expected for argument 2. ' . \ucfirst(\gettype($password)) . ' given instead.'
);
}
if (!\is_bool($raw_binary)) {
throw new \TypeError(
'Boolean expected for argument 3. ' . \ucfirst(\gettype($raw_binary)) . ' given instead.'
);
}
return self::decryptInternal(
$ciphertext,
KeyOrPassword::createFromPassword($password),
$raw_binary
);
}
private static function encryptInternal($plaintext, KeyOrPassword $secret, $raw_binary)
{
RuntimeTests::runtimeTest();
$salt = Core::secureRandom(Core::SALT_BYTE_SIZE);
$keys = $secret->deriveKeys($salt);
$ekey = $keys->getEncryptionKey();
$akey = $keys->getAuthenticationKey();
$iv = Core::secureRandom(Core::BLOCK_BYTE_SIZE);
$ciphertext = Core::CURRENT_VERSION . $salt . $iv . self::plainEncrypt($plaintext, $ekey, $iv);
$auth = \hash_hmac(Core::HASH_FUNCTION_NAME, $ciphertext, $akey, true);
$ciphertext = $ciphertext . $auth;
if ($raw_binary) {
return $ciphertext;
}
return Encoding::binToHex($ciphertext);
}
private static function decryptInternal($ciphertext, KeyOrPassword $secret, $raw_binary)
{
RuntimeTests::runtimeTest();
if (! $raw_binary) {
try {
$ciphertext = Encoding::hexToBin($ciphertext);
} catch (Ex\BadFormatException $ex) {
throw new Ex\WrongKeyOrModifiedCiphertextException(
'Ciphertext has invalid hex encoding.'
);
}
}
if (Core::ourStrlen($ciphertext) < Core::MINIMUM_CIPHERTEXT_SIZE) {
throw new Ex\WrongKeyOrModifiedCiphertextException(
'Ciphertext is too short.'
);
}
// Get and check the version header.
/** @var string $header */
$header = Core::ourSubstr($ciphertext, 0, Core::HEADER_VERSION_SIZE);
if ($header !== Core::CURRENT_VERSION) {
throw new Ex\WrongKeyOrModifiedCiphertextException(
'Bad version header.'
);
}
// Get the salt.
/** @var string $salt */
$salt = Core::ourSubstr(
$ciphertext,
Core::HEADER_VERSION_SIZE,
Core::SALT_BYTE_SIZE
);
Core::ensureTrue(\is_string($salt));
// Get the IV.
/** @var string $iv */
$iv = Core::ourSubstr(
$ciphertext,
Core::HEADER_VERSION_SIZE + Core::SALT_BYTE_SIZE,
Core::BLOCK_BYTE_SIZE
);
Core::ensureTrue(\is_string($iv));
// Get the HMAC.
/** @var string $hmac */
$hmac = Core::ourSubstr(
$ciphertext,
Core::ourStrlen($ciphertext) - Core::MAC_BYTE_SIZE,
Core::MAC_BYTE_SIZE
);
Core::ensureTrue(\is_string($hmac));
// Get the actual encrypted ciphertext.
/** @var string $encrypted */
$encrypted = Core::ourSubstr(
$ciphertext,
Core::HEADER_VERSION_SIZE + Core::SALT_BYTE_SIZE +
Core::BLOCK_BYTE_SIZE,
Core::ourStrlen($ciphertext) - Core::MAC_BYTE_SIZE - Core::SALT_BYTE_SIZE -
Core::BLOCK_BYTE_SIZE - Core::HEADER_VERSION_SIZE
);
Core::ensureTrue(\is_string($encrypted));
// Derive the separate encryption and authentication keys from the key
// or password, whichever it is.
$keys = $secret->deriveKeys($salt);
if (self::verifyHMAC($hmac, $header . $salt . $iv . $encrypted, $keys->getAuthenticationKey())) {
$plaintext = self::plainDecrypt($encrypted, $keys->getEncryptionKey(), $iv, Core::CIPHER_METHOD);
return $plaintext;
} else {
throw new Ex\WrongKeyOrModifiedCiphertextException(
'Integrity check failed.'
);
}
}
protected static function plainEncrypt($plaintext, $key, $iv)
{
Core::ensureConstantExists('OPENSSL_RAW_DATA');
Core::ensureFunctionExists('openssl_encrypt');
/** @var string $ciphertext */
$ciphertext = \openssl_encrypt(
$plaintext,
Core::CIPHER_METHOD,
$key,
OPENSSL_RAW_DATA,
$iv
);
Core::ensureTrue(\is_string($ciphertext), 'openssl_encrypt() failed');
return $ciphertext;
}
protected static function plainDecrypt($ciphertext, $key, $iv, $cipherMethod)
{
Core::ensureConstantExists('OPENSSL_RAW_DATA');
Core::ensureFunctionExists('openssl_decrypt');
/** @var string $plaintext */
$plaintext = \openssl_decrypt(
$ciphertext,
$cipherMethod,
$key,
OPENSSL_RAW_DATA,
$iv
);
Core::ensureTrue(\is_string($plaintext), 'openssl_decrypt() failed.');
return $plaintext;
}
protected static function verifyHMAC($expected_hmac, $message, $key)
{
$message_hmac = \hash_hmac(Core::HASH_FUNCTION_NAME, $message, $key, true);
return Core::hashEquals($message_hmac, $expected_hmac);
}
}
class RuntimeTests extends Crypto
{
public static function runtimeTest()
{
// 0: Tests haven't been run yet.
// 1: Tests have passed.
// 2: Tests are running right now.
// 3: Tests have failed.
static $test_state = 0;
if ($test_state === 1 || $test_state === 2) {
return;
}
if ($test_state === 3) {
/* If an intermittent problem caused a test to fail previously, we
* want that to be indicated to the user with every call to this
* library. This way, if the user first does something they really
* don't care about, and just ignores all exceptions, they won't get
* screwed when they then start to use the library for something
* they do care about. */
throw new Ex\EnvironmentIsBrokenException('Tests failed previously.');
}
try {
$test_state = 2;
Core::ensureFunctionExists('openssl_get_cipher_methods');
if (\in_array(Core::CIPHER_METHOD, \openssl_get_cipher_methods()) === false) {
throw new Ex\EnvironmentIsBrokenException(
'Cipher method not supported. This is normally caused by an outdated ' .
'version of OpenSSL (and/or OpenSSL compiled for FIPS compliance). ' .
'Please upgrade to a newer version of OpenSSL that supports ' .
Core::CIPHER_METHOD . ' to use this library.'
);
}
RuntimeTests::AESTestVector();
RuntimeTests::HMACTestVector();
RuntimeTests::HKDFTestVector();
RuntimeTests::testEncryptDecrypt();
Core::ensureTrue(Core::ourStrlen(Key::createNewRandomKey()->getRawBytes()) === Core::KEY_BYTE_SIZE);
Core::ensureTrue(Core::ENCRYPTION_INFO_STRING !== Core::AUTHENTICATION_INFO_STRING);
} catch (Ex\EnvironmentIsBrokenException $ex) {
// Do this, otherwise it will stay in the "tests are running" state.
$test_state = 3;
throw $ex;
}
// Change this to '0' make the tests always re-run (for benchmarking).
$test_state = 1;
}
private static function testEncryptDecrypt()
{
$key = Key::createNewRandomKey();
$data = "EnCrYpT EvErYThInG\x00\x00";
// Make sure encrypting then decrypting doesn't change the message.
$ciphertext = Crypto::encrypt($data, $key, true);
try {
$decrypted = Crypto::decrypt($ciphertext, $key, true);
} catch (Ex\WrongKeyOrModifiedCiphertextException $ex) {
// It's important to catch this and change it into a
// Ex\EnvironmentIsBrokenException, otherwise a test failure could trick
// the user into thinking it's just an invalid ciphertext!
throw new Ex\EnvironmentIsBrokenException();
}
Core::ensureTrue($decrypted === $data);
// Modifying the ciphertext: Appending a string.
try {
Crypto::decrypt($ciphertext . 'a', $key, true);
throw new Ex\EnvironmentIsBrokenException();
} catch (Ex\WrongKeyOrModifiedCiphertextException $e) { /* expected */
}
// Modifying the ciphertext: Changing an HMAC byte.
$indices_to_change = [
0, // The header.
Core::HEADER_VERSION_SIZE + 1, // the salt
Core::HEADER_VERSION_SIZE + Core::SALT_BYTE_SIZE + 1, // the IV
Core::HEADER_VERSION_SIZE + Core::SALT_BYTE_SIZE + Core::BLOCK_BYTE_SIZE + 1, // the ciphertext
];
foreach ($indices_to_change as $index) {
try {
$ciphertext[$index] = \chr((\ord($ciphertext[$index]) + 1) % 256);
Crypto::decrypt($ciphertext, $key, true);
throw new Ex\EnvironmentIsBrokenException();
} catch (Ex\WrongKeyOrModifiedCiphertextException $e) { /* expected */
}
}
// Decrypting with the wrong key.
$key = Key::createNewRandomKey();
$data = 'abcdef';
$ciphertext = Crypto::encrypt($data, $key, true);
$wrong_key = Key::createNewRandomKey();
try {
Crypto::decrypt($ciphertext, $wrong_key, true);
throw new Ex\EnvironmentIsBrokenException();
} catch (Ex\WrongKeyOrModifiedCiphertextException $e) { /* expected */
}
// Ciphertext too small.
$key = Key::createNewRandomKey();
$ciphertext = \str_repeat('A', Core::MINIMUM_CIPHERTEXT_SIZE - 1);
try {
Crypto::decrypt($ciphertext, $key, true);
throw new Ex\EnvironmentIsBrokenException();
} catch (Ex\WrongKeyOrModifiedCiphertextException $e) { /* expected */
}
}
private static function HKDFTestVector()
{
// HKDF test vectors from RFC 5869
// Test Case 1
$ikm = \str_repeat("\x0b", 22);
$salt = Encoding::hexToBin('000102030405060708090a0b0c');
$info = Encoding::hexToBin('f0f1f2f3f4f5f6f7f8f9');
$length = 42;
$okm = Encoding::hexToBin(
'3cb25f25faacd57a90434f64d0362f2a' .
'2d2d0a90cf1a5a4c5db02d56ecc4c5bf' .
'34007208d5b887185865'
);
$computed_okm = Core::HKDF('sha256', $ikm, $length, $info, $salt);
Core::ensureTrue($computed_okm === $okm);
// Test Case 7
$ikm = \str_repeat("\x0c", 22);
$length = 42;
$okm = Encoding::hexToBin(
'2c91117204d745f3500d636a62f64f0a' .
'b3bae548aa53d423b0d1f27ebba6f5e5' .
'673a081d70cce7acfc48'
);
$computed_okm = Core::HKDF('sha1', $ikm, $length, '', null);
Core::ensureTrue($computed_okm === $okm);
}
private static function HMACTestVector()
{
// HMAC test vector From RFC 4231 (Test Case 1)
$key = \str_repeat("\x0b", 20);
$data = 'Hi There';
$correct = 'b0344c61d8db38535ca8afceaf0bf12b881dc200c9833da726e9376c2e32cff7';
Core::ensureTrue(
\hash_hmac(Core::HASH_FUNCTION_NAME, $data, $key) === $correct
);
}
private static function AESTestVector()
{
// AES CTR mode test vector from NIST SP 800-38A
$key = Encoding::hexToBin(
'603deb1015ca71be2b73aef0857d7781' .
'1f352c073b6108d72d9810a30914dff4'
);
$iv = Encoding::hexToBin('f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff');
$plaintext = Encoding::hexToBin(
'6bc1bee22e409f96e93d7e117393172a' .
'ae2d8a571e03ac9c9eb76fac45af8e51' .
'30c81c46a35ce411e5fbc1191a0a52ef' .
'f69f2445df4f9b17ad2b417be66c3710'
);
$ciphertext = Encoding::hexToBin(
'601ec313775789a5b7a7f504bbf3d228' .
'f443e3ca4d62b59aca84e990cacaf5c5' .
'2b0930daa23de94ce87017ba2d84988d' .
'dfc9c58db67aada613c2dd08457941a6'
);
$computed_ciphertext = Crypto::plainEncrypt($plaintext, $key, $iv);
Core::ensureTrue($computed_ciphertext === $ciphertext);
$computed_plaintext = Crypto::plainDecrypt($ciphertext, $key, $iv, Core::CIPHER_METHOD);
Core::ensureTrue($computed_plaintext === $plaintext);
}
}
}
namespace Defuse\Crypto\Exception
{
class CryptoException extends \Exception
{
}
class WrongKeyOrModifiedCiphertextException extends \Defuse\Crypto\Exception\CryptoException
{
}
}
namespace ParagonIE\ConstantTime
{
interface EncoderInterface
{
public static function encode(string $binString): string;
public static function decode(string $encodedString, bool $strictPadding = false): string;
}
abstract class Binary
{
public static function safeStrlen(string $str): int
{
if (\function_exists('mb_strlen')) {
return (int) \mb_strlen($str, '8bit');
} else {
return \strlen($str);
}
}
public static function safeSubstr(
string $str,
int $start = 0,
$length = null
): string {
if ($length === 0) {
return '';
}
if (\function_exists('mb_substr')) {
return \mb_substr($str, $start, $length, '8bit');
}
// Unlike mb_substr(), substr() doesn't accept NULL for length
if ($length !== null) {
return \substr($str, $start, $length);
} else {
return \substr($str, $start);
}
}
}
abstract class Base64 implements EncoderInterface
{
public static function encode(string $src): string
{
return static::doEncode($src, true);
}
protected static function doEncode(string $src, bool $pad = true): string
{
$dest = '';
$srcLen = Binary::safeStrlen($src);
// Main loop (no padding):
for ($i = 0; $i + 3 <= $srcLen; $i += 3) {
/** @var array<int, int> $chunk */
$chunk = \unpack('C*', Binary::safeSubstr($src, $i, 3));
$b0 = $chunk[1];
$b1 = $chunk[2];
$b2 = $chunk[3];
$dest .=
static::encode6Bits( $b0 >> 2 ) .
static::encode6Bits((($b0 << 4) | ($b1 >> 4)) & 63) .
static::encode6Bits((($b1 << 2) | ($b2 >> 6)) & 63) .
static::encode6Bits( $b2 & 63);
}
// The last chunk, which may have padding:
if ($i < $srcLen) {
/** @var array<int, int> $chunk */
$chunk = \unpack('C*', Binary::safeSubstr($src, $i, $srcLen - $i));
$b0 = $chunk[1];
if ($i + 1 < $srcLen) {
$b1 = $chunk[2];
$dest .=
static::encode6Bits($b0 >> 2) .
static::encode6Bits((($b0 << 4) | ($b1 >> 4)) & 63) .
static::encode6Bits(($b1 << 2) & 63);
if ($pad) {
$dest .= '=';
}
} else {
$dest .=
static::encode6Bits( $b0 >> 2) .
static::encode6Bits(($b0 << 4) & 63);
if ($pad) {
$dest .= '==';
}
}
}
return $dest;
}
protected static function encode6Bits(int $src): string
{
$diff = 0x41;
// if ($src > 25) $diff += 0x61 - 0x41 - 26; // 6
$diff += ((25 - $src) >> 8) & 6;
// if ($src > 51) $diff += 0x30 - 0x61 - 26; // -75
$diff -= ((51 - $src) >> 8) & 75;
// if ($src > 61) $diff += 0x2b - 0x30 - 10; // -15
$diff -= ((61 - $src) >> 8) & 15;
// if ($src > 62) $diff += 0x2f - 0x2b - 1; // 3
$diff += ((62 - $src) >> 8) & 3;
return \pack('C', $src + $diff);
}
}
}
namespace ParagonIE\PasswordLock
{
use \Defuse\Crypto\Crypto;
use \Defuse\Crypto\Key;
use \ParagonIE\ConstantTime\Base64;
class PasswordLock
{
public static function hashAndEncrypt(string $password, Key $aesKey): string
{
if (!\is_string($password)) {
throw new \InvalidArgumentException(
'Password must be a string.'
);
}
$hash = \password_hash(
Base64::encode(
\hash('sha384', $password, true)
),
PASSWORD_ARGON2ID
);
if ($hash === false) {
throw new \Exception("Unknown hashing error.");
}
return Crypto::encrypt($hash, $aesKey);
}
public static function decryptAndVerify(string $password, string $ciphertext, Key $aesKey): bool
{
if (!\is_string($password)) {
throw new \InvalidArgumentException(
'Password must be a string.'
);
}
if (!\is_string($ciphertext)) {
throw new \InvalidArgumentException(
'Ciphertext must be a string.'
);
}
$hash = Crypto::decrypt(
$ciphertext,
$aesKey
);
return \password_verify(
Base64::encode(
\hash('sha384', $password, true)
),
$hash
);
}
public static function rotateKey(string $ciphertext, Key $oldKey, Key $newKey): string
{
$plaintext = Crypto::decrypt($ciphertext, $oldKey);
return Crypto::encrypt($plaintext, $newKey);
}
}
}